Rate Based Distillation Simulation of FRI Test for #2 Nutter Ring Using ChemSep

2012 AIChE Spring Meeting - Houston

Ross Taylor - Clarkson University Attilio J. Praderio - ConocoPhillips - LNG Technology

This Presentation:

Provides an example of the application of Rate-Based Simulation of an industrial scale column.

while avoiding, as much as possible,

theoretical treatments [that] often make formidable reading for the process engineer and it is not easy to pick out a design procedure from the information provided. M.J. Lockett, "Distillation Tray Fundamentals"

Equilibrium Models: simultaneous solution of MESH equations Material Balance, Equilibrium Ratios, Summation of mole fractions, Heat Balance Both, Gas and Liquid Phases are at the same temperature Ideal to Actual Stages via "Efficiencies": Point => Tray => Section => Column

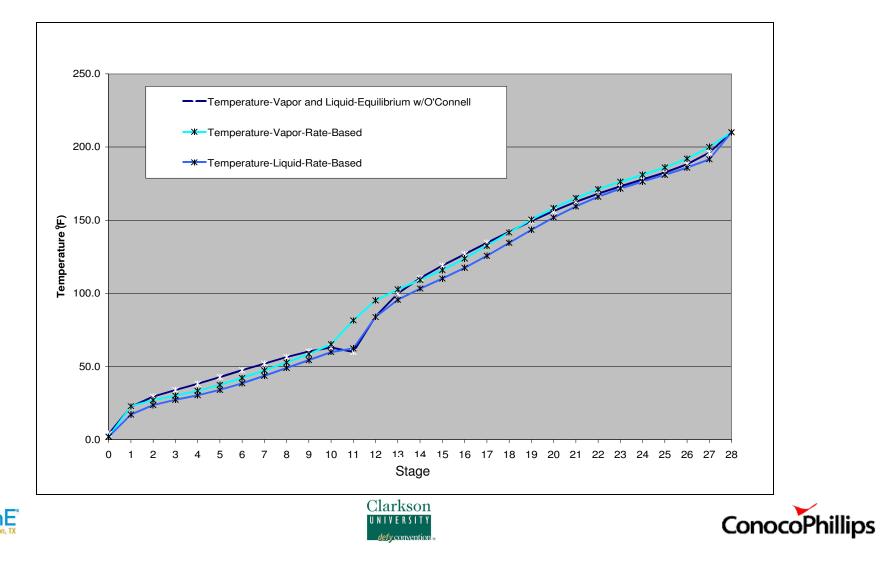
Rate Base Models: simultaneous heat / mass transfer rates based on Driving Forces (Transfer Rate /Unit Area) = Flux = (Transfer Coefficient) X (Driving Force) Individual Temperatures for Gas and Liquid Phases Individual Separation Efficiencies: Component by Component & Stage by Stage "Stage Efficiencies" can be back-calculated and applied to Equilibrium Models

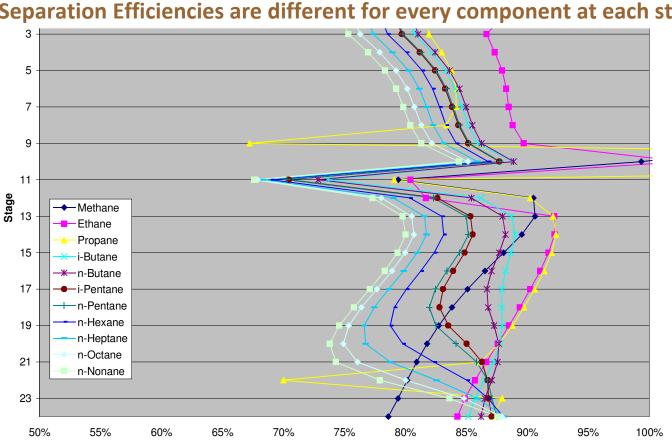
Distillation Column Modeling: Equilibrium \Leftrightarrow Rate Based Some Highlights

Both Models:

- Results agree within 4% when Rate Base back-calculated efficiencies are incorporated in Equilibrium Models.
- Accuracy depends on selection of proper
 - VLE model (EOS and corresponding BiPs) => Liquid and Vapor Composition
 - Mass Transfer / Flow Pattern model selection
 - Physical Properties estimation (component and mixture)

- Can match field results





Distillation Column Modeling: Equilibrium \Leftrightarrow Rate Based Some Highlights => Temperature Profiles

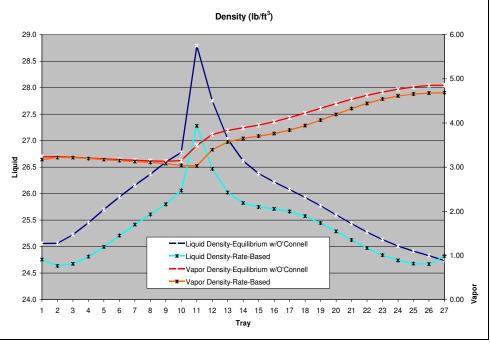
Different Vapor and Liquid Temperatures (RB) vs Equal Temperatures (EQM) Apparent Small Differences in the Temperature Profiles, BUT..

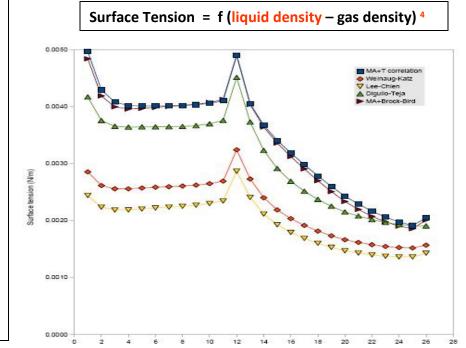
Distillation Column Modeling: Equilibrium \Leftrightarrow Rate Base, **Some Highlights => Separation Efficiencies**

... In Multicomponent Mixtures,

Separation Efficiencies are different for every component at each stage

And despite Individual stage efficiency can be back-calculated and used in Equilibrium Models....



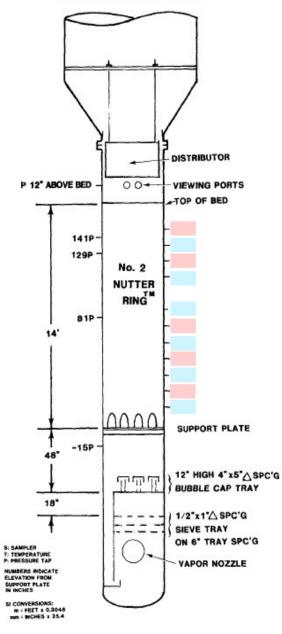


Distillation Column Modeling: Equilibrium \Leftrightarrow Rate Base, Some Highlights => Physical Props Estimation and Hydraulics Performance

The compositional differences effect the estimation of the physical properties related to Tower Capacity :

- Approach to flood (ρ,σ)
- System Limit (ρ,σ)

Stage



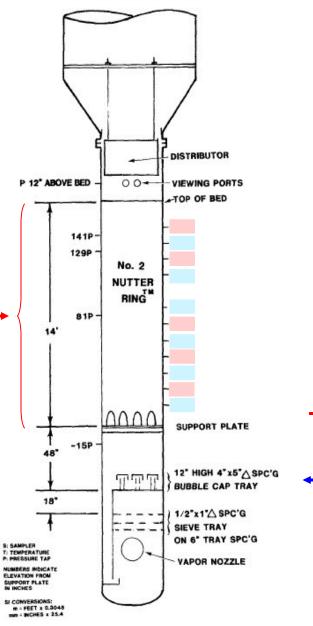
FRI Test Column Arrangement for the Nutter Ring #2

PACKED COLUMN DETAILS

Run Type		Tot Ref
Reboiler Duty	(MMBtu/hr)	5.84
Condenser Duty	(MM Btu/hr)	5.87
Reflux	(M lbs/hr)	34.51
Feed	(M lbs/hr)	46.75
Feeed Location		BTM
Tp Pressure	(psia)	24.0

Temperatures					
Bed Length	F	С			
Overhead Va	212.80	100.44			
Accumulator	168.90	76.06			
Reflux	169.10	76.17			
147	214.20	101.22			
123	217.20	102.89			
75	226.60	108.11			
51	229.50	109.72			
27	234.20	112.33			
Reboiler Vap	238.60	114.78			
Reboiler Liqu	239.90	115.50			
Feed	235.50	113.06			

Concentrations					
Bed Length	Cyclo-C6	n-C7			
Overhead Vapor					
Accumulator					
Reflux	0.8683	0.1317			
135	0.7596	0.2404			
111	0.6458	0.3542			
87	0.5192	0.4808			
63	0.3957	0.6043			
39	0.2553	0.7447			
15	0.1753	0.8247			
Bottoms	0.0789	0.9211			



ChemSep Set Up: Selection of Input Data and Checking Points

	Run Type		Tot Ref
←	Reboiler Duty	(MMBtu/hr)	5.84
←	Condenser Duty	(MM Btu/hr)	5.87
-	Reflux	(M lbs/hr)	34.51
	Feed	(M lbs/hr)	46.75
	Feeed Location		BTM
	Tp Pressure	(psia)	24.0

-> Input to Simulation <- Checking Parameter

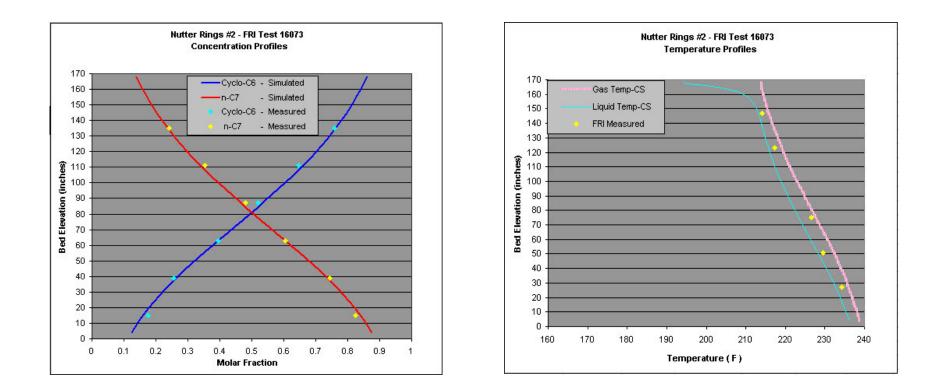
14 feet of bed Simulated as 42 segments of 4 inches each segment PACKED COLUMN DETAILS

	Temperatures					
	Bed Length	F	С			
	Overhead Va	212.80	100.44			
	Accumulator	168.90	76.06			
→	Reflux	169.10	76.17			
(147	214.20	101.22			
	123	217.20	102.89			
	75	226.60	108.11			
_)	51	229.50	109.72			
	27	234.20	112.33			
	Reboiler Vap	238.60	114.78			
-	Reboiler Liqu	239.90	115.50			
	Feed	235.50	113.06			

1	Concentrations					
	Bed Length	Cyclo-C6	n-C7			
	Overhead Vapo	r				
	Accumulator					
▶.	Reflux	0.8683	0.1317			
	135	0.7596	0.2404			
	111	0.6458	0.3542			
	87	0.5192	0.4808			
-{]	63	0.3957	0.6043			
	39	0.2553	0.7447			
	15	0.1753	0.8247			
	Bottoms	0.0789	0.9211			

ChemSep - Set Up: Filling in the Data (1/2)

		ChemSep (TM) - 1Nu	tter_2_Test_16073-	bip-corr-Diff-FSG-Model-	IgMixMix-EXACTs	sep.sep	
	F	ile Edit Solve Analysis					
			↓ × ↓ ↑ T E		ا مرابع		
		Title	✓ Operation				
		Components	Select Type of Simula	tion			
			C Flash				
		Properties	C Equilibrium colum				
		Physical properti	Nonequilibrium co				
		Reactions	C Dynamic column	Jann			
	E	Specifications	V Dynamic column				
			Configuration				
		Pressures	Operation: Total R	eflux Column 💌			
							\sim
		- V Design	Condenser: Total (9	ubcooled product		~	X
		√ Total Reflux ∃√ Results	- ordir (c	and a second later state of the			(1)
			Reboiler: Total (9	uperheated produ 💌			
		Graphs				[2 4	125
		McCabe-Thiele	Number of stages (e.	g. 10) 44			
- ChemSep (TM) - 1Nut	ter_2_Test_1607	3-bip-Dechema-Diff-F	5G-Model-Ig-¥apMi	k-LiqPlug-EXACT.sep			
File Edit Solve Analysis	Databanks Tools	Help					
🗅 😂 🖬 🕨 🍣 🌗		VEDBB	0 a 🖻				
Title	🗸 Analysis 🖌 🗸 F	Pressures 🛛 🗹 Heaters/C	oolers 🗹 Design	🗸 Total Reflux 📃 👘		43	-12
	Internals Design					\sim	\rightarrow
Operation Properties				ctor 1.00000		₽((m)
	Insert	Remove	Copy System fa			×	44
	Section	1 (rating)		ChemSen (TM) - 1N	utter 2 Test 16073-	-bip-Dechema-Diff-F5G-Model-IgMix	Mix-FXACT.sen
	Column internal:	s Dumped Pack	ing	File Edit Solve Analysis			
	First stage	2					
Analysis	Last stage Section height (43 (t) 14.0000			→ × IJTE	🖉 ¥ 🗊 🖪 🗟 🔌 🕿	
Heaters/Coolers	Mass transfer of		2	Title	🖌 Analysis 🖌 Pr	essures 🖌 🗸 Heaters/Coolers 🖌 🗸 Desi	ign 🗹 Total Reflux
	Liquid phase re:		-	Components Operation	Total Reflux Composit	tions	
Total Reflux	Vapour flow mo	del Mixed flow		Properties			
E V Results	Liquid flow mod		NDO	Thermodynamic:	Stage State	Liquid	
- Graphs	Pressure drop Entrainment	Nutter Bulletin	NR2	Physical properti Reactions	Mole fractions		
- McCabe-Thiele	Holdup	Default			Cyclohexane	0.868300	
FUG	Design method	Fraction of floo	od (Nutter)	- Analysis	N-heptane	0.131700	
Units	Section 1 Colum	n internals: Dumped Packi			Total Internal flow	1.00000 Reflux (mass)	
- Solve options Paths	1		-	→ Heaters/Coolers	Flowrate (lb/h		
1 0015	🗁 Load	Column diameter (ft) Stage height (in)	4.00000	Total Reflux	Condenser	Qcondenser	
	Save	DumpedType	Nutter No.	2 E × Results	Reboiler	Qreboiler	
		Specific surface area (1		Tables	Subcooling (F	Temperature of reflux 169.100	
	Reset	Dumped void fraction	0.979000	Graphs McCabe-Thiele	Superheating		
		Nominal size (in)	2.00000			239.900	
Spring Meeting, Houston, TX		Critical surface tension	(dyn/cm) 75.0000	Solve options			
				Paths			

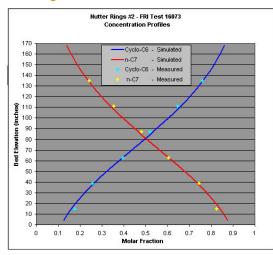

ChemSep - Set Up: Filling in the Data (2/2)

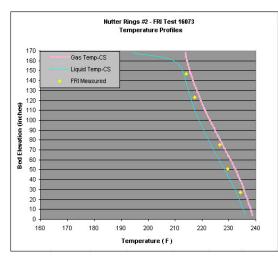
🕂 ChemSep (TM) - 1Nu	tter_2_Test_16073	-bip-Dechema-Diff-FSG-Model-Ig-V	apMix-					
File Edit Solve Analysis	Databanks Tools	Help						
🗅 🚅 🖬 🕨 🍠 🍝	V KITE	🖉 🐔 🗈 🖪 🔝 📀 考 🕿						
Title Components Operation	✓ Thermodynamics	V Physical properties V Reactions	8					
☐ ✓ Properties	K-value	EOS			itter_2_Test_16073-t Databanks Tools He	oip-Dechema-Diff-FSG-Mode	el-Ig-¥apMix-LiqPlug-EXA	CT.sep
Physical properti	Equation of state	Peng-Robinson 76 💌	🗋 🚅 🖬 🕨 😂				F	
⊡ ✓ Specifications	Activity coefficient	Y	Title Components		✓ Thermodynamics ⊢Select Physical Propert	✓ Physical properties √ R w Models	eactions	
✓ Pressures ✓ Heaters/Coolers	Vapour pressure	Y		amic	Use default mode	ils 🦳 Ignore Tranges	Vapour thermal cond	
✓ Design ✓ Total Reflux ⊡ ✓ Results	Enthalpy	Peng-Robinson 76 🔽 🔲 Show enth			Vapour density	Cubic EOS	Pure component Mixture	T correlation
Tables Graphs	Select Thermodynam	ic Model parameters (when required)	□ ✓ Specifications ✓ Analysis		Cubic EOS	Peng-Robinson 76	Liquid thermal condu	ctivity:
	Peng-Robinson 7	76 💌	→ Pressures → Heaters/C → Design	oolers	Virial EOS Liquid density:	Y	Pure component	T correlation
Units Solve options	Reset	i - j k-ij Cyclohexane - N-heptane -4. 750E-03	🖌 🗸 Total Reflu	×		Rackett	Mixture Surface tension:	Molar average
Paths	🗁 Load		Tables Graphs		Mixture Vapour viscosity:	Rackett (Li)	Pure component	T correlation
			McCabe-Thiel	e	Pure component	T correlation	Mixture Diffusivities:	Lee-Chien 💌
			Units Solve options Paths		Mixture	Wilke	Vapour	Fuller-Schettler-Giddings
			" I duis		Liquid viscosity:	High pressure correction	Liquid infinite dil.	
					Pure component Mixture	T correlation	Liquid MS Dij,k->1 Liquid mixture	
			•	Þ	minute	Molar averaging	Liquid mixture	Vignes 💌

ChemSep - Results: Simulation Results compared to Field Data Concentration and Temperature Profiles + Heat Duty Required

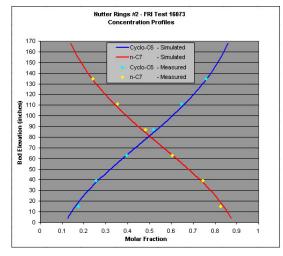
Heat Duties Comparison (MMBTU/hr)

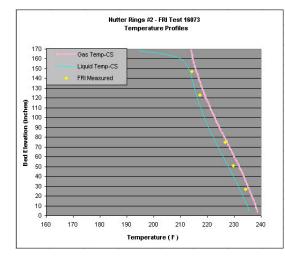
	Measured	Simulated	2
Condenser	5.87	5.76	1.87%
Reboiler	5.84	5.76	1.37%



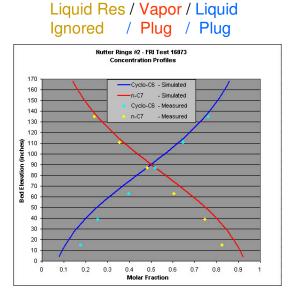


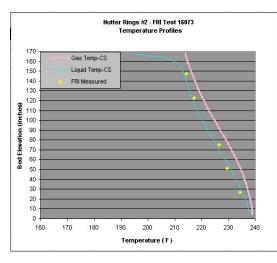
ChemSep - Results: Simulation Results compared to Field Data Flow Pattern Sensitivity


Liquid Res / Vapor / Liquid Ignored / Mixed / Mixed



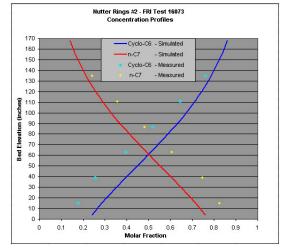
Liquid Res / Vapor / Liquid Included / Plug / Plug

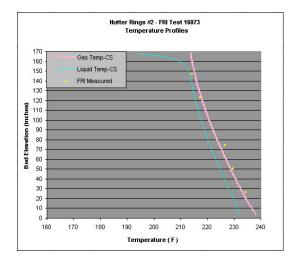


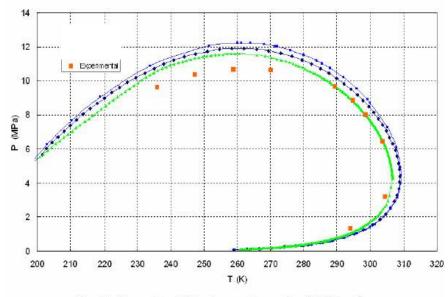


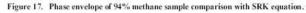
ChemSep - Results: Simulation Results compared to Field Data Flow Pattern Sensitivity

Clarkson


UNIVERSITY <u>defy</u> convention







The Effect of Properties Estimation: EoS and BIP Effects

Component	MW (g/mol)	Composition (mol %)
Nitrogen	28.01	0.246
Carbon Dioxide	44.01	0.143
Methane	16.04	94.045
Ethane	30.07	1.867
Propane	44.10	1.802
i-Butane	58.12	0.356
n-Butane	58.12	0.706
i-Pentane	72.15	0.201
n-Pentane	72.15	0.252
Hexanes:	86.18	0.205
n-Hexane	86.18	0.199
Methylcyclopentane	84.16	0.006
Heptanes +:		
n-Heptane	100.20	0.100
n-Octane	114.23	0.052
n-Nonane	128.26	0.025
Sum	17.88515	100.000

Т	Р	Р
(K)	(psia)	(MPa)
235.99	1396.0	9.625080
247.42	1499.6	10.33937
258.88	1545.8	10.65791
270.14	1542.1	10.63240
289.50	1404.0	9.680238
294.97	1284.4	8.855625
298.64	1162.3	8.013776
303.71	932.15	6.426948
304.52	459.66	3.169244
294.03	188.47	1.299455

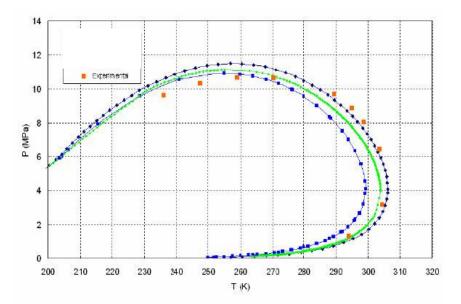
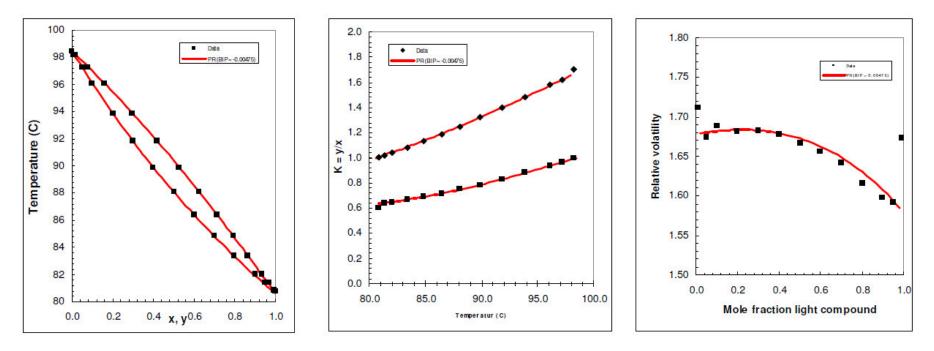


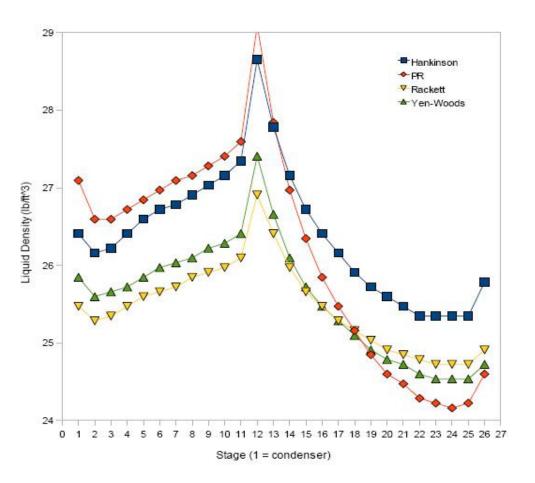
Figure 18. Phase envelope of 94% methane sample comparison with PR equation.


AUTOMATIC ISOCHORIC APPARATUS FOR PVT AND PHASE EQUILIBRIUM STUDIES OF NATURAL GAS MIXTURES - JINGJUN ZHOU - Texas A&M University - May 2005

ChemSep Set Up: EOS and BIP verification with VLE data

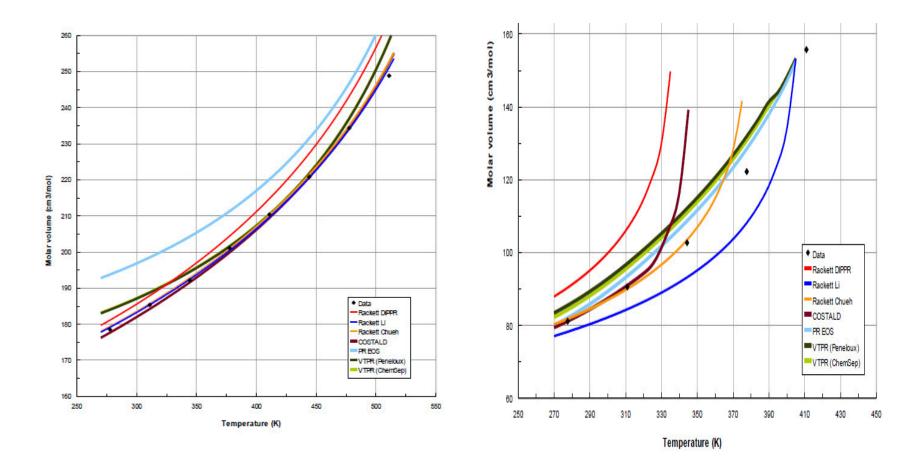
System: Cyclohexane - n-Heptane at 1 atm

JOURNAL	
VOLUME	
PAGES	
YEAR	
TITLE	
AUTHORS	


Ind. Eng. Chem. 51 211 1959 C. Black

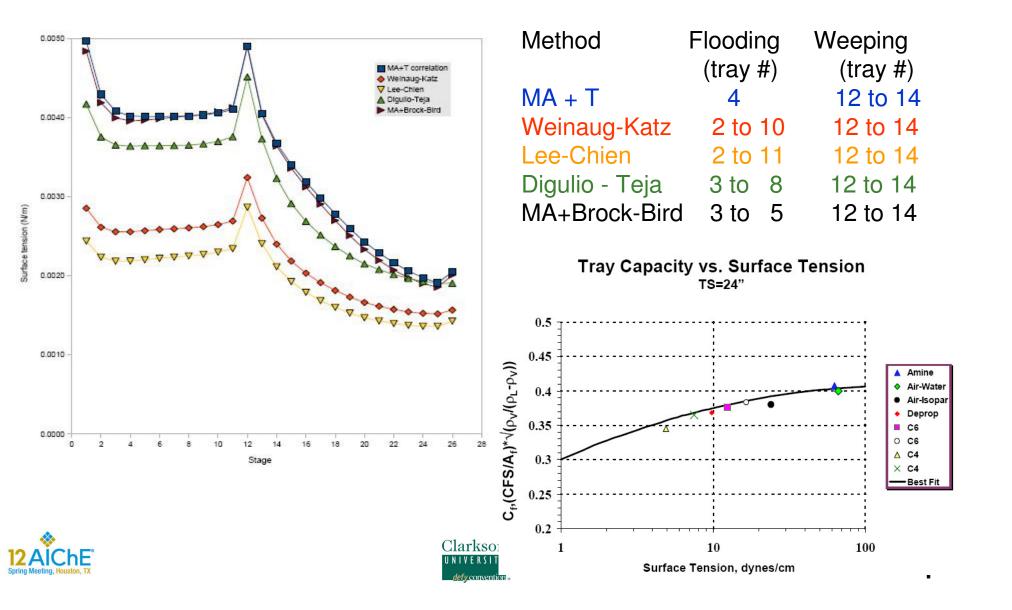
Spring Meeting, Houston, TX

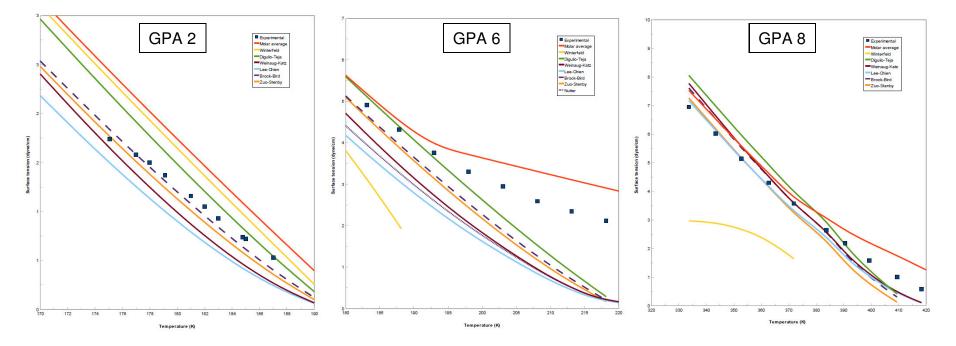
The Effect of Properties Estimation: Liquid Density Estimation Capacity Loss due to unexpected flooding


Method	Flooding (tray #)	Weeping (tray #)
Hankinson	4	12 to 14
PR	-	12 & 13
Rackett	3 to 10	12 & 13
Yen-Woods	3 to 9	12 & 13

The Effect of Properties Estimation: Liquid Density Estimation Capacity Loss due to unexpected flooding

Mixture C2 (10%) - C10


Mixture C2 (90%) - C10


The Effect of Properties Estimation: Surface Tension Estimation Capacity Loss due to possible flooding

Surface Tension Prediction

Effects on Distillation Towers => Capacity Loss

Compound	GPA 2	GPA 3	GPA 4	GPA 5	GPA 6	GPA 7	GPA 8
Methane	0.989	0.9690	0.9560	0.9110	0.7400	0.01	0
Ethane	0.011	0.0310	0.0440	0.0890	0.2490	0.5	0.03
Propane					0.0110	0.23	0.51
N-butane						0.21	0.32
N-heptane						0.05	0.14

Data from : High Pressure Demethanizer Physical Properties, S. Horstmann, A. Grybat, C. Ihmels, K. Fischer, GPA Research Report RR-203, 2010

Concluding Remarks and Proposed Next Steps

- 1. Rate Base Simulations, based on simultaneous heat and mass transfer, are a tool that can enhance the reliability of new designs and troubleshooting operations.
- 2. Three "Key Ingredients" are the appropriate selection and validation of:
 - Equation of State and corresponding BIPs
 - Flow Patterns
 - Physical Properties Estimation
- 3. Care should still be taken when predicting column performance, even when extrapolating experiences from "similar systems" to "different conditions". Since, "It is not about techniques or technology, it is about how to use them", there is no substitute for caution, knowledge and experience.
- 4. Efficiency prediction still remains the area where the biggest gains that can be made from further research in distillation. M.J. Lockett, "Distillation Tray Fundamentals"

Final Thoughts

Tuning a model requires time and effort.

"Research is the Key to Better Design" FRI

