Exporting Custom Properties to CAPE-OPEN

CAPE-OPEN 2022 Annual Meeting

Harry Kooijman & Ross Taylor

Department of Chemical Engineering

Clarkson University

Potsdam, NY 13699

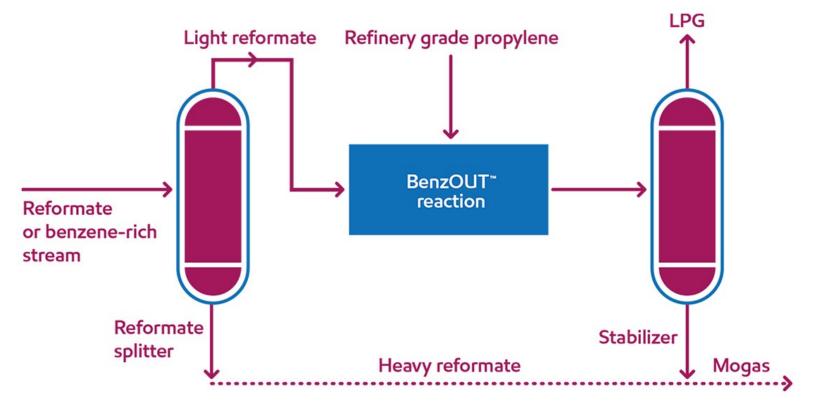
&

Jasper van Baten AmsterChem

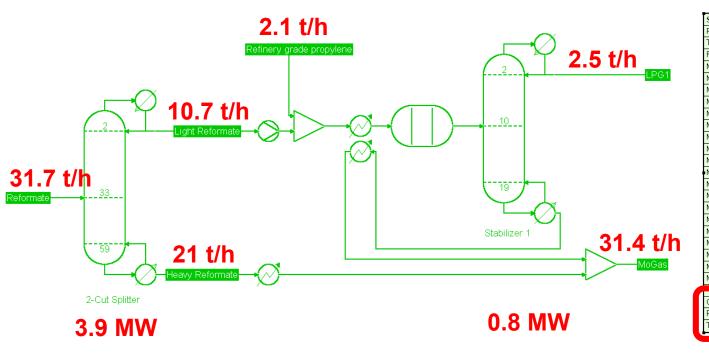
Overview

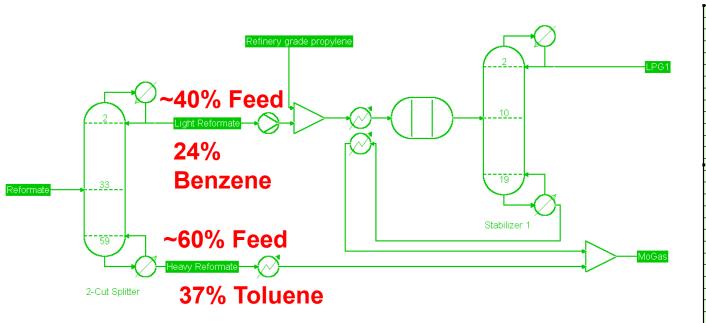
- Desire to expose petroleum properties in ChemSep via CAPE-OPEN Property Package
- Though these properties may be covered by the petroleum properties standard, adoption of that standard takes time
- Thermodynamic standard allows for "custom" properties to pragmatically add any property
- We used custom properties to export petroleum properties, accepting that they may not be universally understood
- Such properties can be 'private' between Unit Operation and CAPE-OPEN Property Package (COPP)

History of ChemSep LITE



- ChemSep standalone distributed to universities
- 2005: v5.0: ChemSep LITE first CAPE-OPEN version, demonstrated as UnitOp in Pro/II & Aspen+
- 2006: v6.0: integrated CAPE-OPEN from wrapper into GUI and added adaptive icons (in COCO)
- 2015: v7.0: ChemSep CAPE-OPEN property packages
- 2018: v8.0: Parallel Column Model for DWC
- 2022: v8.3: Export of Additional Properties


- Reduce Benzene in gazoline (Mogas) by reacting with Propylene without causing a loss in octane#
- Includes stabilizer to maintain low vapor pressure
- Patented process US 8,395,006 B2:


- Process needs to fulfill petroleum properties specs:
 - Minimize drop in octane number
 - Maintain low Reid Vapor Pressure of product

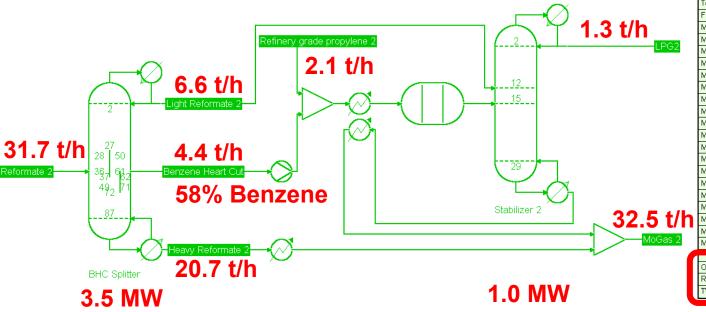
Stream	Reformate	MoGas	Unit
Pressure	3.5	2.5	bar
Temperature	100	71.0902	°C
Flow rate	343	335.349	kmol / h
Mole frac n-butane	0.0309038	0.00909843	
Mole frac isopentane	0.0819242	0.0835314	
Mole frac n-pentane	0.0580175	0.0592973	
Mole frac 2-methylpentane	0.0862974	0.0882657	
Mole frac n-hexane	0.045481	0.0465187	
Mole frac benzene	0.101458	0.0121412	
Mole frac 3-methylhexane	0.0186589	0.0190846	
Mole frac toluene	0.248397	0.254064	
Mole frac ethylbenzene	0.0306122	0.0313107	
Mole frac p-xylene	0.0370262	0.037871	
Mole frac m-xylene	0.106122	0.108544	
Mole frac o-xylene	0.0478134	0.0489043	
Mole frac m-ethyltoluene	0.0361516	6 0.0369765	
Mole frac 1,3,5-trimethylbenzene	0.0594752	0.0608322	
Mole frac 1,4-diethylbenzene	0.0116618	0.0119279	
Mole frac Propane	0	6.03384e-07	
Mole frac Propylene	0	6.69168e-07	
Mole frac Cumene	0	0.0595601	
Mole frac P-diisopropylbenzene	0	0.0320708	
	ara priace		
OCTN	100.404	98.3165	-
RVP	0.414281	0.315115	bar
TVP100	0.427999	0.333599	bar

- Process needs to fulfill petroleum properties specs:
 - Minimize drop in octane number
 - Maintain low Reid Vapor Pressure of product

Stream	Reformate	MoGas	Unit
Pressure	3.5	2.5	bar
Temperature	100	71.0902	°C
Flow rate	343	335.349	kmol / h
Mole frac n-butane	0.0309038	0.00909843	
Mole frac isopentane	0.0819242	0.0835314	
Mole frac n-pentane	0.0580175	0.0592973	
Mole frac 2-methylpentane	0.0862974	0.0882657	
Mole frac n-hexane	0.045481	0.0465187	
Mole frac benzene	0.101458	0.0121412	
Mole frac 3-methylhexane	0.0186589	0.0190846	
Mole frac toluene	0.248397	0.254064	
Mole frac ethylbenzene	0.0306122	0.0313107	
Mole frac p-xylene	0.0370262	0.037871	
Mole frac m-xylene	0.106122	0.108544	
Mole frac o-xylene	0.0478134	0.0489043	
Mole frac m-ethyltoluene	0.0361516	0.0369765	
Mole frac 1,3,5-trimethylbenzene	e 0.0594752 0.0608322		
Mole frac 1,4-diethylbenzene	0.0116618	18 0.0119279	
Mole frac Propane	0 6.03384e-07		
Mole frac Propylene	0 6.69168e-07		
Mole frac Cumene	0	0.0595601	
Mole frac P-diisopropylbenzene	0	0.0320708	
Liq	uid phase		
OCTN	100.404	98.3165	-
RVP	0.414281	0.315115	bar
TVP100	0.427999	0.333599	bar
	_		

Can we improve the economics of this process while maintaining performance in OCTN & RVP?

Can we improve the economics of this process while maintaining performance in OCTN & RVP?


- Produce "heart-cut" product in which >99% of the Benzene is recovered, only send this to the reactor: Reduces flow through reactor & stabilizer by 2x
- Use Dividing Wall Column (DWC) technology to revamp the reformate splitter in the same column

Advantages:

- Smaller reactor + stabilizer: TAC -30%
- No difference in OCTN or RVP
- 5% lower duty

Stream	Reformate 2	MoGas 2	Unit
Pressure	3.5	2.5	bar
Temperature	100	71.3644	°C
Flow rate	343	334.936	kmol / h
Mole frac n-butane	0.0309038	0.0115992	
Mole frac isopentane	0.0819242	0.0805443	
Mole frac n-pentane	0.0580175	0.0587449	
Mole frac 2-methylpentane	0.0862974	0.0883696	
Mole frac n-hexane	0.045481	0.0465759	
Mole frac benzene	0.101458	0.0120102	
Mole frac 3-methylhexane	0.0186589	0.0191081	
Mole frac toluene	0.248397	0.254377	
Mole frac ethylbenzene	0.0306122	0.0313493	
Mole frac p-xylene	0.0370262	0.0379177	
Mole frac m-xylene	0.106122	0.108678	
Mole frac o-xylene	0.0478134	0.0489646	
Mole frac m-ethyltoluene	0.0361516	0.037022	
Mole frac 1,3,5-trimethylbenzene	0.0594752	0.0609072	
Mole frac 1,4-diethylbenzene	0.0116618	0.0119426	
Mole frac Propane	0	2.02693e-06	
Mole frac Propylene	0	2.25938e-06	
Mole frac Cumene	0	0.0597255	
Mole frac P-diisopropylbenzene	0	0.0321599	
	uiu piiase		
OCTN	100.404	98.3402	-
RVP	0.414281	0.318967	bar
TVP100	0.427999	0.337995	bar

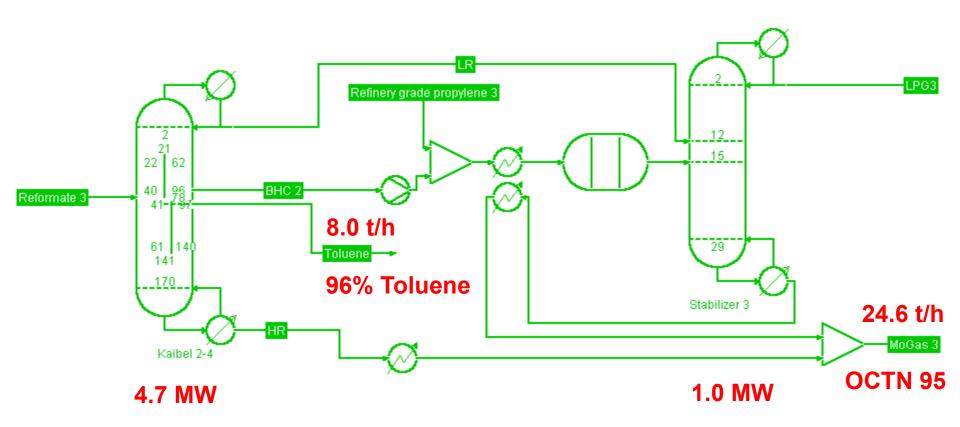
Other advantages:

Flexible co-production of 58% Benzene product

Can we further optimize?

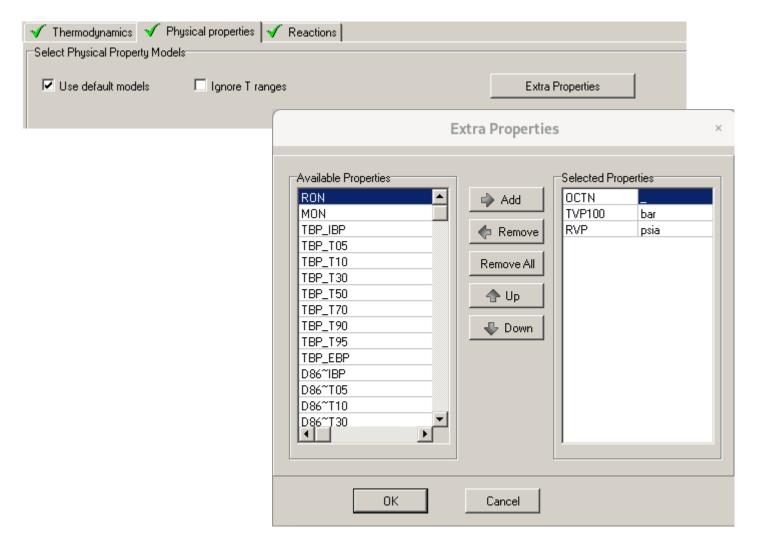
Other advantages:

Flexible co-production of 58% Benzene product


Can we further optimize?

- Extra duty enables co-production of >96% Toluene as separate product with Kaibel configuration
- Maintaining OCTN 95 Mogas

 Existing reformate splitters can be revamped using sloped-wall DWC designs, see Dejanovic et al.*


^{*} Dejanović, I., Matijašević, L., Jansen, H., Olujić, Ž., 2011. Designing a Packed Dividing Wall Column for an Aromatics Processing Plant. Industrial & Engineering Chemistry Research 50, 5680–5692. https://doi.org/10.1021/ie1020206

Selection of Extra Properties

As part of the physical properties models selection

Extra Properties Methods

RON & MON: Table values / Estimated from groups or Tb & SG

OCTN: Posted Octane Number = RON/2+MON/2

Flash Point: Riazi (eqn. 3.114/3.115)

TVP100: Antoine vapor pressure model at 100 F

(with Ambrose or Riedel as back-up)

RVP: Approximation using the TVP100, mixtures per Riazi p. 132

TBP: Spline interpolation

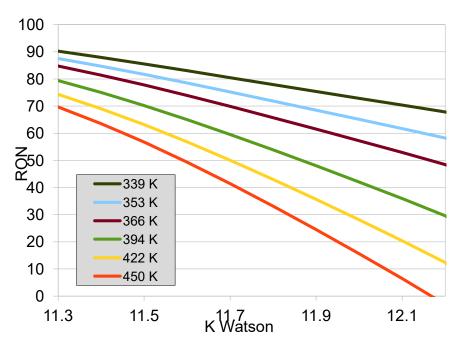
D86: Riazi-Daubert 1986 on TBP

API density

K Watson

More to come...

RON & MON Estimation



RON:

- UNIFAC groups: Albahri (*Ind.Eng.Chem.Res.* (2003) 42, pp. 657-662 + (2004) 43, p. 7964) and new -OH/=O/-O- groups average error 8.8%
- Pseudo's: Nelson (1969) as f(Kw,Tb) for Naphtha's

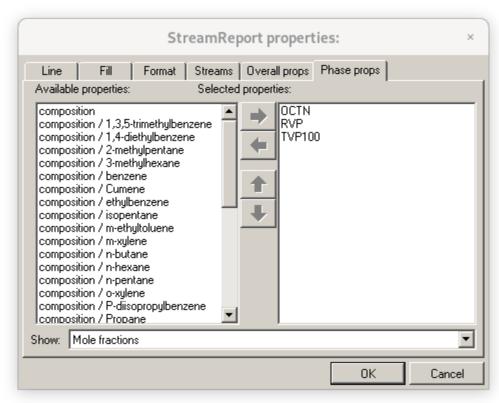
MON:

Jenkins (1968) average error 8%

Extra Properties Results

Internal Thermo: Show as part of stream table output

Stream	Feed1	L.Feed1	Тор	Bottom	Sidestream
Stage Pressure (psia) Vapour fraction (-) Temperature (K) Enthalpy (J/kmol) Entropy (J/kmol/K)	37 50.7632 0.000000 373.218 -2.212E+07 -36044.6	37 49.5838 0.000000 373.220	39.1602 0.000000 338.862 -1.970E+07 -50096.6	88 56.7596 0.000000 455.119 -8.930E+06 -2814.91	50.8737 0.000000 391.402 -1.622E+07 -38012.1
Total molar flow (kmol/s) Total mass flow (kg/s) Vapour std.vol.flow (m3/s) Liquid std.vol.flow (m3/s)	0.0952834 8.81370 0.0111053	0.0952834 8.81370 0.0111053	0.0255687 1.92960 0.00302690	0.0576599 5.89568 0.00681101	0.0120548 0.988422 0.00126738
Liquid: Mole weight (kg/kmol) Density (kg/m3) Std.density (kg/m3) Viscosity (N/m2.s) Heat capacity (J/kmol/K) Thermal cond. (J/s/m/K) Surface tension (N/m)	92.4999 716.579 793.649 2.3365E-04 200600 0.104216 0.0160580	92.4999 716.563 793.649 2.3365E-04 200601 0.104211 0.0160577	75.4672 587.747 637.483 1.6713E-04 188257 0.0959115 0.0113389	102.249 700.750 865.610 1.4136E-04 237046 0.0931280 0.0115046	81.9941 676.010 779.892 1.8449E-04 189124 0.102774 0.0134855
Extra: OCTN () TVP100 (bar) RVP (psia)	100.382 0.428177 6.01158	100.382 0.428177 6.01158	74.6569 1.20952 17.1398	114.685 0.0510031 0.651681	84.9530 0.316488 4.12011



Extra Properties Results

CS/COPP: As part of the stream table output in COCO

Stream	Reformate	MoGas	Unit
Pressure	3.5	2.5	bar
Temperature	100 71.0902		°C
Flow rate	343	335.349	kmol / h
Mole frac n-butane	0.0309038	0.00909843	
Mole frac isopentane	0.0819242	0.0835314	
Mole frac n-pentane	0.0580175	0.0592973	
Mole frac 2-methylpentane	0.0862974	0.0882657	
Mole frac n-hexane	0.045481	0.0465187	
Mole frac benzene	0.101458	0.0121412	
Mole frac 3-methylhexane	0.0186589	0.0190846	
Mole frac toluene	0.248397	0.254064	
Mole frac ethylbenzene	0.0306122	0.0313107	
Mole frac p-xylene	0.0370262	0.037871	
Mole frac m-xylene	0.106122 0.108544		
Mole frac o-xylene	0.0478134	34 0.0489043	
Mole frac m-ethyltoluene	0.0361516	0.0369765	
Mole frac 1,3,5-trimethylbenzene	0.0594752	0.0608322	
Mole frac 1,4-diethylbenzene	0.0116618	0.0119279	
Mole frac Propane	0	6.03384e-07	
Mole frac Propylene	0	D 6.69168e-D7	
Mole frac Curnene	0	0.0595601	
Mole frac P-diisopropylbenzene	0	0.0320708	
Liq	uid phase		
OCTN	100.404 98.3165 -		-
R√P	0.414281	0.315115	bar
T√P100	0.427999	0.333599	bar

Extra Properties Results

Units of Measure – Allows conversion of units

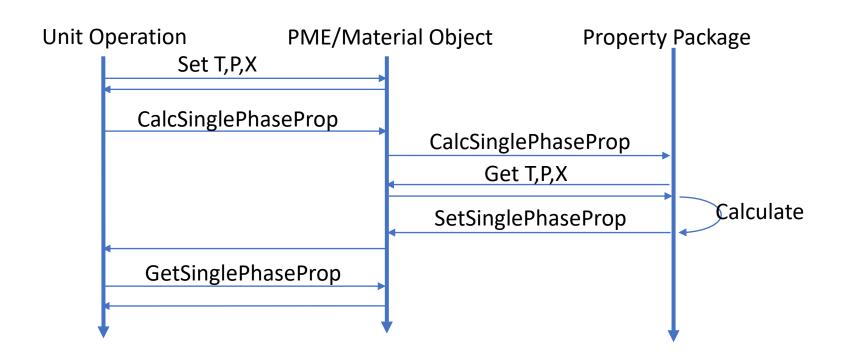
Stream	Reformate	MoGas	Unit
Pressure	3.5	2.5	bar
Temperature	100	71.0902	°C
Flow rate	343	335.349	kmol / h
Mole frac n-butane	0.0309038	0.00909843	
Mole frac isopentane	0.0819242	0.0835314	
Mole frac n-pentane	0.0580175	0.0592973	
Mole frac 2-methylpentane	0.0862974	0.0882657	
Mole frac n-hexane	0.045481	0.0465187	
Mole frac benzene	0.101458	0.0121412	
Mole frac 3-methylhexane	0.0186589	0.0190846	
Mole frac toluene	0.248397	0.254064	
Mole frac ethylbenzene	0.0306122	0.0313107	
Mole frac p-xylene	0.0370262	0.037871	
Mole frac m-xylene	0.106122	0.108544	
Mole frac o-xylene	0.0478134	0.0489043	
Mole frac m-ethyltoluene	0.0361516	0.0369765	
Mole frac 1,3,5-trimethylbenzene	0.0594752	0.0608322	
Mole frac 1,4-diethylbenzene	0.0116618	0.0119279	
Mole frac Propane	0	6.03384e-07	
Mole frac Propylene	0	6.69168e-07	
Mole frac Cumene	0	0.0595601	
Mole frac P-diisopropylbenzene	0	0.0320708	
Liq	uid phase		
OCTN	100.404	98.3165	-
R√P	0.414281	0.315115	bar
T√P100	0.427999	0.333599	bar

	Liquid phase	•	
OCTN	100.404	98.3165	-
R√P	6.00864	4.57036	psi
T√P100	6.2076	4.83844	psi
	•		

Code to get the Extra Properties?

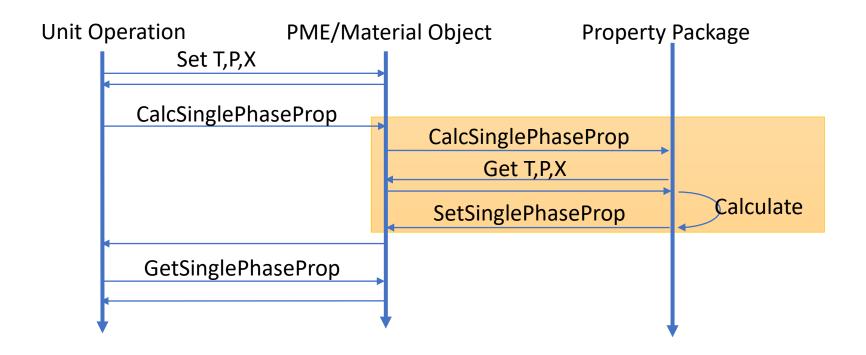
Call to Fortran DLL:

```
nex = NumberExtraProps()
do j=1,nex
 i = idExtraProperty(j)
 call EPname (i, Cname)
 call EPdesc (i,iDmns,Desc)
 call EProp (i, Cvalue, T, p, Ffeed, Z, nc, ncmax, iErr)
 if (iErr .eq. 0) then
  write(io,*) Cvalue, ' '//Cname
 else
  write(io,*) 'error calculating '//Cname
 end if
end do
```


See the back-up slides for a description of the function arguments

Extra Properties Calculation

Calling Sequence:



Extra Properties Calculation

Calling Sequence:

PME can also access the property by itself!

Summary

- CAPE-OPEN Custom Properties (COCP) are useful
- ChemSep uses COCP for Petroleum Properties Drawback: Overall properties are missing, exposed as liquid properties
- COCP definition (ChemSep ←→ COCO) via private API Drawbck: No support by other PMEs

Questions?

Backup slides

Code to get the Extra Properties?

integer NumberExtraProps()

Returns the number of Extra Properties in the COPP

integer idExtraProperty(j)

Returns the type of the jth Extra Property. Each type has its own number

subroutine **EPname** (i, Cname)

Returns the name for the ith Extra Property as string in Cname

subroutine **EPdesc** (i,iDmns,Desc)

Returns the description Desc as string and dimensions array Dmns for the ith Extra Property

Subroutine **EProp** (i, Cvalue, T, p, Ffeed, Z, nc, ncmax, iErr)

Integer i, nc, ncmax, iErr; double Cvalue, T, p, Ffeed; double array Z

Returns the value Cvalue for the ith Extra Property using T,p,Ffeed,Z()

How to Get the Extra Properties?

C/C++ Getting the DLL entry points:

- NumberExtraProps=(F_NUMBEREXTRAPROPS)GetProcAddress(dllHandle,"numberextraprops_");
- if (!NumberExtraProps) { throw COException(L"Unable to load NumberExtraProps function from ChemSep DLL"); }
- idExtraProperty=(F_IDEXTRAPROPERTY)GetProcAddress(dllHandle,"idextraproperty_");
- if (!idExtraProperty) { throw COException(L"Unable to load idExtraProperty function from ChemSep DLL"); }
- EPdesc=(F_EPDESC)GetProcAddress(dllHandle,"epdesc_");
- if (!EPdesc) { throw COException(L"Unable to load EPdesc function from ChemSep DLL"); }
- EProp=(F_EPROP)GetProcAddress(dllHandle,"eprop_");
- if (!EProp) { throw COException(L"Unable to load EProp function from ChemSep DLL"); }

How to Get the Extra Properties?


```
CS/COPP DLL calls in C/C++:
  int nex=(*NumberExtraProps)();
  for (int i=1;i<=nex;i++) {
   int id=(*idExtraProperty)(&i);
   char propName[101];
   propName[100]=' ';
   int dimension[7];
    (*EPdesc)(&id,dimension,propName,100);
    for (int j=100;j>=0;j--) { if (propName[j]!=' ') {propName[j+1]=0; break; }
UTF8toUTF16 pName(propName);
  propMap[pName]=PropDetails::make((PropertyID)(PropID_EXTAPROP0+id),0,Deriv_None,m
  assBasisDependent, SinglePhaseProperty, pName);
  propList1p.emplace back(pName);
```

RON & MON Text-Files

ComponentList RON & MON Applications in Energy and Combustion Science 5 (2021) 100018

CAS Number RON

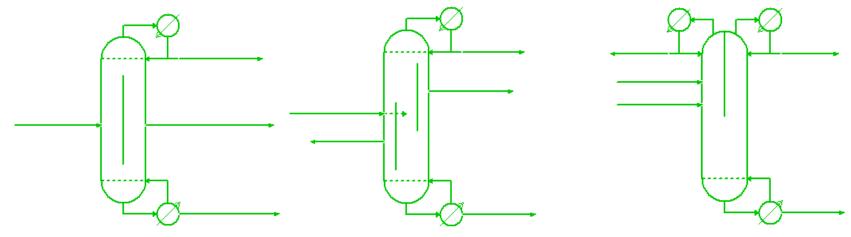
MON

1 74-84-0 115

99

2 74-98-6 111

97


3 106-97-8 94 89

...

DWC Process Simulation in ChemSep

- Parallel Column Model for CAPE-OPEN compliant systems
- Does not require any guesses for streams
- Predefined configurations with single & multiple walls, selection from drop-down list
- Icons reflect actual configuration (in COCO)
- Rapid tray/packing internals design of each column section with selection of any modern type internal
- Column sizing include auxiliaries: CAPEX & OPEX
- Connection to vendor rating tools

Icons in COCO (www.cocosimulator.com)