

Dividing Wall Columns Simulation Done Easy

Harry Kooijman & Ross Taylor

Department of Chemical Engineering Clarkson University Potsdam, NY 13699

Working Party Fluid Separations, June 2023, Zagreb

Overview

- Introduction: An incomplete history of Dividing Wall Columns
- Parallel Column Model for DWC in ChemSep
- Refinery application:
 - Reformate BenzOUT process
- Chemicals applications:
 - SHOP (Shell Higher Olefins Process)
 - Ethylene and Propylene Glycols
 - Ethanol-Amines
 - Oleo-Chemicals: Fatty Alcohols
- Summary

A long road from concept to common-place:1930: Luster, Standard Oil US 1,915,681 A

Clarkson

A long road from concept to common-place:
1938: Monro*, Standard Oil, US 2,134,882

larkson

defy convention

* Often cited as Monroe, but the patent has Monro in multiple locations

A long road from concept to common-place:1949: Wright, Standard Oil US 2,471,134 A

Clarkson

A long road from concept to common-place:1985: Kaibel, BASF EP 0,126,288 A2

Kaibel DWC

Clarkson

There is now, of course, MUCH more

- ~1997: Montz unfixed walls technology & sloped walls
- Multiple walls (up to 6 products)
- Linde DWC columns (heat integrated)
- Reactive DWCs

DWC Simulation: Old (and Hard) Way

Dividing Wall Column

Simulated with multiple columns (here in UNISIM Design)

Clarkson

defy convention

UNIVFR

Ashrafian, R. (2014). Using Dividing Wall Columns (DWC) in LNG Production: deviding wall column, double dividing wall column, prefractionator arrangement, Petlyuk column, NGL recovery, distillation (Master's thesis, Institutt for energi-og prosessteknikk).

DWC Process Simulation in ChemSep

- Parallel Column Model for CAPE-OPEN compliant environments
- Does not require any guesses for streams
- Predefined configurations with single & multiple walls, selection from drop-down list
- Icons reflect actual configuration (in COCO via CAPE-OPEN)
- Rapid tray/packing internals design of each column section with selection of any modern type internal
- Column sizing include auxiliaries: CAPEX & OPEX
- Connection to vendor rating tools

9

Jarkson

Parallel Column Model - ChemSep

Select DWC from predefined configurations

Predefined DWC / 2WC

Simplified pressure specification:

- Top and Bottom pressure
- Top and $\triangle P$: makes switching configuration easy!

Assume area ratio equalizes ${\bigtriangleup} P$ on either side of the wall

Profile plots with combined walls

Refinery: Reformate Processing

Reduce Benzene in gazoline (Mogas) by reacting with Propylene without causing a loss in octane#

Clarkson

- Includes stabilizer to maintain low vapor pressure
- Patented US 8,395,006 B2 by EXXON-Mobile:

- Process needs to fulfill petroleum properties specs:
 - Minimize drop in **Octane Number**
 - Maintain low <u>Reid Vapor Pressure</u>

Need to monitor these extra properties

Clarkson

2.1 t// Refinery grade pr	n ^{opylene} 2.5 t/h
10.7 t/h	
31.7 t/h	
59 21 t/h Heavy Reformate	Stabilizer 1 31.4 t/h
2-Cut Splitter 3.9 MW	0.8 MW

Stream	Reformate	MoGas	Unit
Brocouro	35	2.5	bar
Temperature	100	2.3	on on
Flow rote	242	225.240	Umal (h
Flow rate	343	335.349	KMUL7 N
Mole frac n-butane	0.0309038	0.00909843	
Mole frac isopentane	0.0819242	0.0835314	
Mole frac n-pentane	0.0580175	0.0592973	
Mole frac 2-methylpentane	0.0862974	0.0882657	
Mole frac n-hexane	0.045481	0.0465187	
Mole frac benzene	0.101458	0.0121412	
Mole frac 3-methylhexane	0.0186589	0.0190846	
Mole frac toluene	0.248397	0.254064	
Mole frac ethylbenzene	0.0306122	0.0313107	
Mole frac p-xylene	0.0370262	0.037871	
Mole frac m-xylene	0.106122	0.108544	
Mole frac o-xylene	0.0478134	0.0489043	
Mole frac m-ethyltoluene	0.0361516	0.0369765	
Mole frac 1,3,5-trimethylbenzene	0.0594752	0.0608322	
Mole frac 1,4-diethylbenzene	0.0116618	0.0119279	
Mole frac Propane	0	6.03384e-07	
Mole frac Propylene	0	6.69168e-07	
Mole frac Cumene	0	0.0595601	
Male free D diisenrenulkenzene	0	0.0000700	
Liq	uid phase		
OCTN	100.404	98.3165	-
RVP	0.414281	0.315115	bar
TVP100	0.427999	0.333599	bar

- Process needs to fulfill petroleum properties specs:
 - Minimize drop in **Octane Number**
 - Maintain low **Reid Vapor Pressure**

Stream	Reformate	MoGas	Unit
Pressure	3.5	2.5	bar
Temperature	100	71.0902	°C
Flow rate	343	335.349	kmol / h
Mole frac n-butane	0.0309038	0.00909843	
Mole frac isopentane	0.0819242	0.0835314	
Mole frac n-pentane	0.0580175	0.0592973	
Mole frac 2-methylpentane	0.0862974	0.0882657	
Mole frac n-hexane	0.045481	0.0465187	
Mole frac benzene	0.101458	0.0121412	
Mole frac 3-methylhexane	0.0186589	0.0190846	
Mole frac toluene	0.248397	0.254064	
Mole frac ethylbenzene	0.0306122	0.0313107	
Mole frac p-xylene	0.0370262	0.037871	
Mole frac m-xylene	0.106122	0.108544	
Mole frac o-xylene	0.0478134	0.0489043	
Mole frac m-ethyltoluene	0.0361516	0.0369765	
Mole frac 1,3,5-trimethylbenzene	0.0594752	0.0608322	
Mole frac 1,4-diethylbenzene	0.0116618	0.0119279	
Mole frac Propane	0	6.03384e-07	
Mole frac Propylene	0	6.69168e-07	
Mole frac Cumene	0	0.0595601	
Mole frac P-diisopropylbenzene	0	0.0320708	
Liq	uid phase		
OCTN	100.404	98.3165	-
RVP	0.414281	0.315115	bar
TVP100	0.427999	0.333599	bar

Clarkson

Improve the economics of this process while maintaining OCTN & RVP:

- Only send Benzene-rich "heart-cut" to reactor: Reduce flow through reactor & stabilizer by 2x
- Can revamp existing reformate splitter to DWC

- Advantages:
 - Smaller reactor + stabilizer: TAC -30%
 - No difference in OCTN or RVP
 - Slight lower overall duty (-5%)

Reformate 2

MoGas 2

Unit

bar

°C

bar

bar

kmol /

Stream

Other advantages:

Flexible co-production of Benzene-rich product

Can we further optimize?

- Kaibel configuration: enables co-production of >96% Toluene as separate product
- Maintaining OCTN 95 Mogas

Existing reformate splitters can be revamped using sloped-wall DWC designs, like Dejanovic et al.*

Clarkson

* Dejanović, I., Matijašević, L., Jansen, H., Olujić, Ž., 2011. Designing a Packed Dividing Wall Column for an Aromatics Processing Plant. Industrial & Engineering Chemistry Research 50, 5680–5692. https://doi.org/10.1021/ie1020206

Chemicals: SHOP

Chemicals: Ethylene Glycols (MEG)

Chemicals: Propylene Glycol (MPG)

Chemicals: Ethanol-Amines

No energy savings Savings from single C & R

Oleo-Chemicals: Fatty Alcohols

Clarkson UNIVERSITY

Reactive DWC

Summary

- Simulation 'easily' done in ChemSep by use of predefined configurations with pressure drops
- Can optimize DWC process on petroleum properties
- Not every DWC is physically feasible / lower in capex
- DWC selection & its integration in the process matter

Questions?

Selection of "Extra Properties"

Part of the physical properties models selection

🔨 Thermodynamics 🗹 Physical properties 🗖	🗸 Reactions		
Select Physical Property Models			
☑ Use default models	ges	Extra Properties	
	E	xtra Properties	×
	Available Properties RON MON TBP_IBP TBP_T05 TBP_T10 TBP_T50 TBP_T50 TBP_T90 TBP_T95 TBP_EBP D86~105 D86~105 D86~107	Add	
	ОК	Cancel	

Extra Properties Methods

- RON & MON: Table values / Estimated from groups or Tb & SG
- **OCTN:** Posted Octane Number = RON/2+MON/2
- Flash Point: Riazi (eqn. 3.114/3.115)
- TVP100: Antoine vapor pressure model at 100 F (with Ambrose or Riedel as back-up)
- RVP: Approximation using the TVP100, mixtures per Riazi p. 132
- TBP: Spline interpolation
- D86: Riazi-Daubert 1986 on TBP
- API density
- K Watson

More to come...

RON:

- UNIFAC groups: Albahri (*Ind.Eng.Chem.Res.* (2003) 42, pp. 657-662 + (2004) 43, p. 7964) and new -OH/=O/-O- groups average error 8.8%
- Pseudo's: Nelson (1969) as f(Kw,Tb) for Naphtha's

MON:

Jenkins (1968) average error 8%

Extra Properties

Stream-tables with custom CAPE-OPEN properties

		_		
1	Stream	Reformate	MoGas	Unit
	Pressure	3.5	2.5	bar
	Temperature	100	71.0902	°C
	Flow rate	343	335.349	kmol / h
	Mole frac n-butane	0.0309038	0.00909843	
	Mole frac isopentane	0.0819242	0.0835314	
	Mole frac n-pentane	0.0580175	0.0592973	
	Mole frac 2-methylpentane	0.0862974	0.0882657	
	Mole frac n-hexane	0.045481	0.0465187	
	Mole frac benzene	0.101458	0.0121412	
	Mole frac 3-methylhexane	0.0186589	0.0190846	
	Mole frac toluene	0.248397	0.254064	
	Mole frac ethylbenzene	0.0306122	0.0313107	
1	Mole frac p-xylene	0.0370262	0.037871	
	Mole frac m-xylene	0.106122	0.108544	
	Mole frac o-xylene	0.0478134	0.0489043	
	Mole frac m-ethyltoluene	0.0361516	0.0369765	
	Mole frac 1,3,5-trimethylbenzene	0.0594752	0.0608322	
	Mole frac 1,4-diethylbenzene	D.D116618	0.0119279	
	Mole frac Propane	0	6.03384e-07	
	Mole frac Propylene	0	6.69168e-D7	
	Mole frac Cumene	0	0.0595601	
	Mole frac P-diisopropylbenzene	0	0.0320708	
	Liq	uid phase		
	OCTN	100.404	98.3165	-
	RV₽	0.414281	0.315115	bar
J	TVP100	0.427999	0.333599	bar
E.				

2010	Fill	Format	Streams	Overall props	Phase props	
Available j	properties:		Selected	properties:		
compositi compositi compositi compositi compositi compositi compositi compositi compositi	on on / 1,3,5- on / 1,4-di on / 2-met on / 2-met on / 3-met on / benze on / benze on / Cume on / Cume on / m-eth on / m-xyle	trimethylber ethylbenzer hylpentane hylhexane ene ne nenzene ntane yltoluene ene	nzene	OCTN RVP TVP10	00	
compositi compositi compositi compositi compositi	on / n-buta on / n-hex on / n-pen on / o-xyle on / P-diisa on / Propa	ane ane tane ppropylbenz ne	ene			

Liquid phase			
OCTN	100.404	98.3165	-
RVP	6.00864	4.57036	psi
TVP100	6.2076	4.83844	psi
	•		